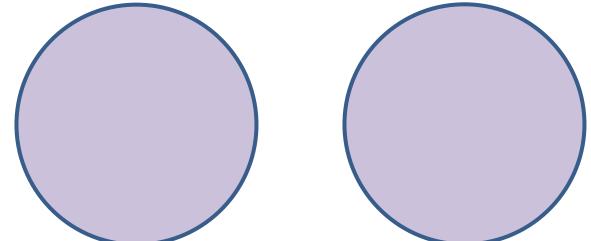

Perimeter and Area of Polygons and Circles Explore Activity

Directions: The data below were collected using dynamic geometry software. Use the data to complete the table. Answer the questions that follow.



Hexagon Number	Apothem (a) (cm)	$\frac{1}{2}^{\alpha}$	Perimeter (P) (cm)	Area (A) (cm²)
1				
2				
3				
4				
5				

Debriefing Questions

- 1. Taking a rounding error into account, what is the relationship among the apothem, perimeter and area of each hexagon?
- 2. What symbolic formula can you write to show the relationship among the apothem, perimeter and area of each hexagon?
- 3. Explain why your formula can be used to find the area of any regular polygon.

Directions: Cut out or trace the two circles below. Use paper folding or a protractor to create the sectors shown in the table. Use a centimeter ruler to measure and help you complete the table.

Circle	m∠AOB	<u>m∠AOB</u> 360	Circumference of the Circle	Length of arc AB	Area of the Circle	Area of sector AOB
A B B	90°	$\frac{90}{360} = \frac{1}{4}$				$A_{sec} = \frac{1}{4}(33.17)$ $A_{sec} = 8.29 cm^2$
A B						
a a a a a a a a a a a a a a a a a a a						
A B						

© Cosenza & Associates, LLC. All rights reserved. Page 2 of 3

Debriefing Questions

- 1. How did you determine the length of arc AB?
- 2. How did you determine the area of sector AOB?
- 3. What formula can be used to find the length of an arc of a circle?

4. What formula can be used to find the area of a sector of a circle?